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Abstract

Dynamic languages are often slower and use more memory than statically typed lan-
guages. The reason for this is the dynamic typing. This thesis shows that by optimizing
data types for collections like lists, sets and dictionaries as well as data types on instance
variables, memory usage can be reduced by 10% to 50% and execution time by 5% to
90%.
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1 Introduction

Using just-in-time compilers in dynamic languages is a good way to type-specialize data
types that reside on the stack, like local variables. The goal of this thesis is to optimize
data that is located on the heap. Two major problems of dynamic languages are speed
and memory. Due to their dynamic typing these languages are harder to make fast than
statically typed ones. Also, due to dynamic typing an additional level of abstraction in
the memory layout is necessary which wraps all data types into objects. This costs a lot
of memory. A solution for this problem is to remove that boxing in some cases. This
solution is based on the assumptions that a lot of data types are stored in collections such
as lists, sets and dictionaries and that storing mixed types is unlikely for them. Removing
the boxing does not only save up the memory that is used by the wrapper object, but
also gives the JIT information about the data types during runtime which it can use to
optimize generated code.

This thesis proposes to remove the boxing for primitive data stored in containers such
as lists, sets and dictionaries. This is possible when such a data structure stores only
elements of the same primitive type. This happens often in practical programs. A related
optimization can be performed on instances.

The contributions of this thesis are:

• Analysis of memory usage of Python programs

• Memory optimization for data types in lists, sets and dictionaries that store primi-
tive data types only

• Faster interaction between data types in those collections

• Speed optimizations for operations on collections by using the newly gained type
information about their content

• Memory optimization for instance variables storing primitive data types

The thesis is structured as follows: Section 2 gives an introduction to dynamic languages,
Python and the PyPy project. It also explains how data types are implemented in dy-
namic languages and how this affects memory usage. Section 3 presents the results of
the memory analysis of several Python programs and explains how this was done and
which programs were used. In Section 4 it is explained how collections such as lists, sets
and dictionaries can be optimized by implementing the proposed solutions in PyPy. It is
also shown how operations can be made faster by using the information that are gained
from using unwrapped data types and how this influences the JIT. Section 5 explains
how instance variables are stored in PyPy and how they can be optimized by removing
the boxing and using integer tagging. Section 6 presents results of how the optimizations
reduce memory usage and execution time.
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2 Background

This thesis mostly treats dynamic languages, their behaviour and implementation. Ev-
erything concerning the implementation of the discussed techniques is done within the
PyPy project. Therefore, it is necessary to explain some terms and some of the used tech-
nologies.

2.1 Dynamic Languages

Dynamic Languages are a class of high-level languages. The difference to statically typed
languages is that most of their behaviour is changeable at runtime. This results in some
major properties:

• dynamic typing: Types are not declared in the sourcecode, but are attached to the
values during runtime.

• reflection: In many of these languages it is possible to inspect and even change the
running program from within itself.

• late binding: An object that is referenced by a variable can only be determined at
runtime. This also means that the same variables may reference to different types
during execution.

In practice dynamic languages also have other properties. For instance, many of them
come with an interactive console where parts of a program can be written and imme-
diately be executed. Furthermore, they are garbage-collected and interpreted. Another
important property that can be found in many dynamic languages is that everything
is an object. This means that all objects are manipulated the same way. This applies
to instances, lists, modules, classes, functions, strings and even primitive datatypes as
numbers and booleans.

A common implementation technique for dynamic languages is interpretation. This
can be done by compiling the user program into a set of bytecode instructions and
running these bytecodes in an emulator or by builing and iterating over an abstract
syntax tree (AST). But, since iterating over the AST is very slow, bytecode compilation
is the preferred method. However, interpretation is not a necessary property. Dynamic
languages could also be compiled to machine code. The problem with compilation is that
due to dynamic typing the source code of dynamic languages does not contain enough
information to make the machine code efficient. To compensate the slow interpretation,
today many dynamic language implementations use just-in-time compilation. However,
whereas writing an interpreter for a dynamic languages is relatively easy it is quite
complicated to write a JIT compiler. Some popular examples for dynamic languages are
PHP [Gro12], JavaScript [Int99], Python [VR+94], Perl [WCO00], Ruby [FM08] and Tcl
[Tea12].
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2.2 Python

Python was created by Guido van Rossum at Stichting Mathematisch Centrum Nether-
lands in the early 1990s [Lut96]. It is a powerful dynamic programming language that is
used in a wide variety of application domains. Python has a very clear and readable syn-
tax and offers features like intuitive object orientation, strong introspection, garbage col-
lection and high-level dynamic data types. Furthermore it has a huge amount of standard
libraries for almost any task. The reference implementation is CPython and is written in
C. The sourcecode is compiled into bytecode and interpreted via a bytecode VM.

2.3 The PyPy Project

PyPy was started in 2003 as a Python interpreter written in a high-level language,
Python. There are several advantages of writing a VM in a high-level language. Back
then the goal of PyPy was the implementation of a full featured, customizable and
fast implementation of Python. By using a high-level language it should be easy to
experiment with new language features and implementation techniques and introduce
them without changing too much. For example, it should be relatively easy to try out
different garbage collectors. Gradually, PyPy evolved and became a common translation
framework for dynamic languages. The goals changed too and today PyPy aims to
provide an easy way to write flexible implementations for different dynamic languages
that can be kept free of low-level details like memory management, object layout and
threading model [RP06]. By using PyPy’s translation toolchain, the implementations can
be translated into various target environments while adding those low-level details as
well as garbage collection or a tracing JIT in the process.

However, implementing virtual machines in PyPy does not allow the use of the
full Python language. Instead a “compromise between expressivity and the need to
statically infer enough type information to generate efficient code” [AACM07] had to
be found. Thus, the language RPython was developed. RPython stands for "Restricted
Python" and is a subset of Python. It is still valid Python code but it does not allow
dynamic typing (i.e. types don’t have to be written, but are inferred). Code written in
RPython can be translated using PyPy’s translation framework. It converts RPython
programs into an efficient low-level version for a specific target platform. Currently
supported are C/Posix, CLI and JVM. For the translation to the target platform several
steps are needed, where each step reduces the level of abstraction until conversion to
source code is done which can then be compiled. These steps include conversion to a
control flow graph, performing type inference and optional optimizations like inlining.

Although PyPy changed over the years one major task is still the development of
the Python interpreter. Of course it is written in RPython, too, and then translated to
C using PyPy’s translation toolchain. It implements the full Python language and is
currently compatible to CPython up to version 2.7.2. The interpreter consists of three
components: A bytecode compiler, a bytecode evaluator and the object space. The
bytecode compiler reads the source code of a user application and produces Python
code objects from it. The bytecode evaluator then interprets these objects. The third
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component of the interpreter, the standard object space, can be thought of as a library
of builtin types [Doc12] and is responsible for creating and manipulating objects that
are seen by the application. It provides a complete set of interpreter level classes that
implement later application level objects (e.g. strings, integers, lists, dictionaries, sets,
etc.). All of those application level objects have one parent at the interpreter level,
the abstract class W_Object. As in Python in PyPy everything is an object too, so we
need this parent class so the language can be dynamically typed. Examples for objects
subclassing W_Object are W_IntObject, W_StringObject, W_ListObject.

Since interpretation is very slow compared to compilation, PyPy uses a tracing JIT
to improve performance. Tracing JITs have been initally explored by the Dynamo
Project [BDB00] and soon proved to be a relatively easy way to implement just-in-time-
compilers. Tracing JITs are built upon the assumption that programs typically spent most
of their time in loops and these loops are very likely to take the same paths. To speed up
execution the interpreter has a profiling phase during interpretation where it searches
for frequently executed loops, called hot loops. On finding such a loop a special tracing
mode is entered that logs the operations the interpreter does and generates machine
code from it. This machine code can then be executed every time the loop runs again
which could be immediately in the next iteration step or any time in the future.

2.4 Memory Effects of Dynamic Languages

One of the effects of dynamic typing in dynamic languages is that every variable can store
objects of arbitrary types. That means that all objects need a uniform representation in
memory, even primitive ones like integers and floats. This makes it possible that all oper-
ations can be equally performed on all objects. Of course this still means that attempting
to perform such an operation can produce a runtime error. For instance, have a look at
the following Python code:

if cond:
x = 5

else:
x = "abc"

y = x * 3

The multiplication can act on either an int or a string. That means that it is necessary for
both ints and strings to be represented by a small object on the heap. This representation
of primitives as small heap objects is called boxing or wrapping1.

Unfortunately, boxing primitive datatypes like integers, floats and strings, costs a lot of
memory. For example an integer in C on a 32-bit machine has the size of 4 bytes. In
CPython it is 12 bytes which is three times as big. The problem is that the boxing object
needs memory, too, as can be seen in Figure 1.

If we have a collection of integers, for instance stored in a list, this becomes even worse.
Because the integer is wrapped into an object it can not be stored directly on the list, as

1Of course another approach would be to use integer tagging to store the integer itself. [Gud93]
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Figure 1: C vs. CPython integer

it would be in C, but needs to be referenced by a pointer. This indirection would cost
additional 4 bytes. Figure 2 shows the need for indirections when implementing a list in
a dynamic language using the example of PyPy. In the layout every box corresponds to
one word of memory. The boxes "GC" come from CPython’s reference count field of its
garbage collector, in PyPy the garbage collector needs a word for various status flags.

Figure 2: Memory layout of a list containing integers

So, in total there are extra 12 bytes per element for a list of integers in CPython compared
to an array in C. Let’s say we have a list of 1.000.000 integers. Then the same list would
need 11.44 MiB more memory in CPython than it would in C.
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3 Memory Research in PyPy

To find out which objects use the most memory the following programs were analyzed
and the memory usage during runtime was observed. These programs are later also
used as benchmarks to measure the quality of the optimizations presented in this thesis.
To achieve some meaningful results, important properties of those benchmarks are that
they run in a reasonable amount of time, are real applications and, most important, con-
sume a sizable amount of memory (6 - 1000 MiB). In addition a few micro benchmarks
were written (tagged with "*") to show best/worst case scenarios. The results were ob-
tained by running the programs until a certain point was reached were they use the most
memory. Then different techniques were used to measure the memory and the used data
types. So this data only represents memory usage during a specific point of time and was
not gathered by monitoring the whole execution to search for allocations of the different
types.

3.1 Benchmarks

Here is a description of all benchmarks and how they were used to analyze the memory
they consume.

• NetworkX: "NetworkX is a Python language software package for the creation, ma-
nipulation, and study of the structure, dynamics, and functions of complex net-
works" [Dev12a]. Memory usage is measured after creating a Barabási and Albert
graph with 5000 nodes and a degree of 100.

• scapy: "Scapy is a powerful interactive packet manipulation program. It is able
to forge or decode packets of a wide number of protocols, send them on the wire,
capture them, match requests and replies. [...] It can easily handle most classical
tasks like scanning, tracerouting, probing, unit tests, attacks or network discovery
[...].[Log12] The benchmark uses Scapy to sniff an offline dump of captured packets
(∼ 800KB).

• pyexcelerator is a Python library for "generating Excel 97+ files with Python, im-
porting Excel 95+ files, support for UNICODE in Excel files, using variety of format-
ting features and printing options, Excel files and OLE2 compound files dumper."
[Dev12c] For the benchmark a new Excel sheet is created with 6000 rows and 200
columns of data.

• PyDbLite: "PyDBLite is a fast, pure-Python, untyped, in-memory database engine
using Python syntax to manage data, instead of SQL." [Que12]. For the benchmark
a table with the columns ’word’, ’row’, ’pos’ and ’filename’ is created. Then two
books (’Faust1’ [Goe00a] and ’Faust2’ [Goe00b]) are read and for each word the
word itself, the row, the position and the filename are inserted into the database.

• pypy-interp: This benchmark uses PyPy to interpret a program creating a list and
adding 5000 tuples containing integers, strings, floats, dictionaries and user-defined
objects to that list.
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• pypy-translate In this benchmark PyPy’s translation toolchain is used to translate an
RPython version of the common Richards benchmark to C.

• whoosh: "Whoosh is a fast, featureful full-text indexing and searching library im-
plemented in pure Python. Programmers can use it to easily add search functional-
ity to their applications and websites. Every part of how Whoosh works can be ex-
tended or replaced to meet your needs exactly" [Dev12b]. In the benchmark whoosh
is used to index Goethes Faust 1 [Goe00a] and Faust 2 [Goe00b].

• Feedparser is, as the name suggests, a program for reading RSS feeds. The bench-
mark measures after parsing ∼ 8.5MB of (locally stored) small RSS feeds.

• nltk-wordassoc: Uses the Natural Language Toolkit [Nlt12] to do some text anal-
ysis like counting all nouns that occur ahead of other nouns. This benchmark was
inspired by examples in [Mad07].

• Disaster: "Disaster aims to do simultaneous and morphological disambiguation
and syntactic chunking of Slavic languages (currently Polish) using Machine Learn-
ing techniques" [RP10]. The benchmark measures after training a source.

• Bazaar is a version control system like Git or Mercurial. The benchmark, initializes
a new Bazzar repository and adds a Python project consisting of over 700 files with
the total size of ∼ 57 MB. The benchmark hooks after packing the repository.

• Multiwords: "Multiwords implements the LocalMaxs algorithm for extracting
multiword units (MWUs) from plain text", described in [SL99]. The benchmark
runs the multiwords algorithm on top of Goethes ’Faust: Der Tragoedie zweiter
Teil’ [Goe00b].

• orm: This benchmark, created by [Bay12], uses SQLAlchemy to create an object-
relational mapping to store some data into an SQLite Database.

• slowsets is a small Python program that uses sets to find all combinations of the
letters A-Z.

• findprimes is a small Python program that uses generators to find prime numbers.

• invindex implements an inverted index algorithm in Python as described in
[Cod12] and analyzes Goethe’s Faust1 and Faust2 [Goe00a, Goe00b].

• liststrategy* creates three different lists with 1000000 elements each. The first one
containing only integers, the second one containing strings and the last containing
integers but instead of the others was created by using Pythons range method.

• setstrategy* is equivalent to the liststrategy benchmark, storing a huge number of
integers and strings in sets.
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3.2 Analysing memory usage

As explained in 2.4 especially interesting is the memory usage of collections such as lists,
sets and dictionaries. To measure this a program was written which executes each bench-
mark and analyzes all objects that are found in the memory during the execution of that
benchmark. The easiest way to do this is by using the garbage collector to iterate over
all objects it manages during runtime. A list of all objects in memory can be received by
importing the garbage collector module (import gc) and calling gc.get_objects.
The size of an object can be measured by using the system module and it’s method
sys.getsizeof(obj). However, this will only return the size needed by the object
itself. It will not measure the size of other objects it points to. To calculate the total size of
a collection and all its objects we need to follow the collections referents, measure their
sizes and add this to the total value.

3.3 Results

In this section, several diagrams are presented, showing different collections storing
different data types. Specifically, it was measured how many objects are stored, the size
they take up in memory and their percentage to the total heap size.
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Figure 3: Percentage of memory used by different data types compared to total memory
usage.

Figure 3 shows the total memory usage of each benchmark divided into the different
data types. Those include lists, sets, dictionaries, numeric values (e.g. integers, longs),
text strings (e.g. ascii, unicode), user generated objects and objects that are created by the
interpreter (True, None, Frame, etc). Note that these results are static measurements that
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were gathered from a single snapshot during execution. Furthermore, the memory size
does not include the size of the elements stored in a container. It only counts the size of
the object itself, although this size increases with the number of elements. It should also
be noted that the category dict does not include the __dict__ attribute of an object but
only dictionaries created explicitly in the user program.

As we can see almost all programs make heavy use of the dict type. This is ex-
pected as this type is very popular in the Python language. Another type that is often
used is string, mostly in the same benchmark where dictionaries are used, presumably
because they are preferably used as keys. Tuples and sets seem to be of the lesser used
types, whereas lists do make up a fair amount of memory compared to the total usage.
In the following figures, we have a closer look on the data types that are stored in these
containers. For the analysises the containers were separated into different groups. For
each group it is shown how much memory is used by a container which elements only
have the data type of the that group. Containers that store different data types or data
types that are not interesting for this analysis (since they can not be optimized, e.g. user
types) are categorized under "rest".
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Figure 4: Data types stored in lists

Most of the benchmarks do not use as many lists as one might expect and if they do
mostly arbitrary data is stored as can be seen in Figure 4. However there are still
some benchmarks which have lists of strings and integers taking up to 10% of total
memory for the benchmarks pypy-interp and invindex. Since the liststrategy benchmark
is a synthetic benchmark it cannot be thought of as a real use case. The findprimes
benchmark, although being a very small program, would be a valid implementation for
finding prime numbers and could be considered a general use case.
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Figure 5: Data types stored in sets

The data type analysis of sets does not give many results. The reason for this could
be that the benchmark selection is just an arbitrary collection of Python programs that
tend to use a lot of memory. Thus, having only a few benchmarks that use sets may
be pure coincidence. However, it is more likely that sets are not used as often as lists
and dictionaries. Almost every benchmark uses at least some lists and dictionaries
whereas sets only appear in a few (of which one was deliberately written to use sets).
Nevertheless, the few benchmarks show that there are at least some use-cases where a lot
of sets are used and that those sets typically contain a single data type. For instance the
slowsets benchmark, which aims to find all combinations of the letters of the alphabet,
uses almost 1 GB of memory.

In Figure 6 we can see that dictionaries are not only used very often but also are
responsible for a good deal of the total memory usage. Furthermore, the diagram shows
that the assumption that strings are often used in combination with dictionaries is
mostly true. A very good example is the database software pydblite where dictionaries
containing strings account for over 80% of total memory usage.

In summary, it can be said that there is some potential in saving total memory us-
age of a program by optimizing containers such as lists, sets and dictionaries. The
memory analysis shows that these data types are used very often in Python. However,
the diagrams only show the amount of containers used in the program and their per-
centage of total memory. They do not show how many objects a collection contains. But
since the (memory) size of a container increases with the number of elements, one single
container with a huge amount of elements can be as easily observed in the diagram as
many containers with only few elements.
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Figure 6: Data types stored in dictionaries

In Section 2.4 we have seen that data types may become quite huge due to the
boxing of all values. In this section we have also seen that this is bad for collections such
as lists, dicts and sets. However, another observation was that the data types in those
collections are often the same, presumably because it is very unlikely to, for instance,
append an integer to a huge list of strings.
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4 Optimization of Data Types

Knowing that most collections do not have mixed types, those data structures could be
optimized if they contain primitive data types. So instead of wrapping the elements of a
list, a dictionary or a set, we want to implement these data structures in a way that they
are optimized for certain primitive data types. These implementations store the content
of the container in unwrapped form, getting rid of the extra indirection and boxing
objects.

We start with Section 4.1 describing two possible ways to implement these opti-
mizations on the basis of lists. In sections 4.2 and 4.3, the same idea is applied for sets
and dictionaries. Since the implementation is almost the same, only differences to the
list implementation and some special optimizations are described. Section 4.4 describes
further optimization when interacting between different collections. Finally, section 4.5
shows the influence on the JIT.

For the further understanding of this section it is also necessary to know that in PyPy,
implementations of Python objects have the prefix "W_", which stands for "wrapped",
to distinguish them from RPython objects. For example the class representing a list is
called "W_ListObject", the one representing a string is called "W_StringObject".

4.1 Lists

One approach to get lists to store their data unwrapped, would be to add a level of in-
direction to W_ListObject, making each instance point to another object that stores
the actual content. For this other object, several implementations would exist: For every
data type we want to store without wrapping it as well as a general one that deals with
arbitrary content. The data layout would look as shown in Figure 7.

Figure 7: Class diagramm of three list objects storing some elements using special list
implementations.

This approach has the problem that we need two indirections to get to the data and that
the implementation instances need memory themselves.
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What we would like to do is to make the W_ListObject point to an RPython list
directly, that contains either wrapped or unwrapped data. This plan has the problem
that storing different unwrapped data is not directly possible in RPython.

To solve the problem, we use the rerased RPython library module. It allows us
to erase the type of an object, in this case a list, and returns something similar to void

* in C, or Object in Java. This object is then stored on the W_ListObject in the field
storage. If we want to work with the list, for instance to append or delete items, we
need to unerase the storage again. An example on how to use the rerased module is
shown in Listing 1.

Listing 1: Example for (un)erase

1 storage = erase([1, 2, 3, 4])
2 # storage is an opaque object that you can do nothing with
3 ....
4 l = unerase(storage)
5 l.clear()

Now that we know how to make the W_ListObject point directly to wrapped or un-
wrapped data, we need to find out how to actually do any operations on this data. This
can be accomplished by adding another field to our W_ListObject. This field points
to a list-strategy object. The actual implementation of W_ListObject is now deferred
to this object. For instance, a W_ListObject which holds only integers will use the
IntegerListStrategy. Calling a method on a list will first invoke the method of the
W_ListObject. Since the W_ListObject does not know what type its elements have, it del-
egates this method call to its strategy. Also it gives itself with the method as argument.
This is necessary because all list-strategies are singletons and each of them can manage
multiple lists. So to know on which list the operations needs to be done, it must have a
reference to that list (see Listing 2 and Figure 8).

Listing 2: Delegating methods to the ListStrategies

1 class W_ListObject(W_AbstractListObject):
2

3 def append(w_list, w_item):
4 w_list.strategy.append(w_list, w_item)

Each strategy implements a special version of every method that can be perfomed on
a list, adjusted to the type of data it manages. Examples for such methods are append,
pop, insert, remove, contains, index, getitem, setitem, getslice, setslice, extend, length, reverse,
sort, etc. For the most methods, like the append method, the Integer-, String- and
ObjectListStrategy share the same implementation, since the procedure is the same.
For an example on how the delegation works, let’s have a look at the method append
shown in Listing 3.

At first the strategy needs to check if the element that is appended, has the same
type as the other elements in the list. Therefore, each strategy has a method called
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Figure 8: Using IntegerListStrategy

Listing 3: Append of the Integer- and StringListStrategy

1 class AbstractUnwrappedStrategy(object):
2

3 def append(self, w_list, w_item):
4

5 if self.is_correct_type(w_item):
6 self.unerase(w_list.lstorage).append(self.unwrap(w_item))
7 return
8

9 w_list.switch_to_object_strategy()
10 w_list.append(w_item)
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is_correct_type that returns True or False depending on the type of the given ele-
ment (see Listing 4 for this method’s implementation on the IntegerListStrategy).
The Integer- and StringListStrategy have an equal implementation. The
ObjectListStrategy always returns True since lists using that strategy already have
different types, so every item can be added.

Listing 4: Checking the type for the IntegerListStrategy

1 class IntegerListStrategy(AbstractUnwrappedStrategy, ListStrategy):
2

3 def is_correct_type(self, w_obj):
4 return is_W_IntObject(w_obj)

By adding a type that is different from the elements currently stored in the list it is
mandatory to change the used strategy as well as the storage in compatible ways.
For example when a string is added to a list of integers the strategy will call the
switch_to_object_strategy method which is defined on the W_ListObject (see
Listing 5). There all elements contained in the list need to be wrapped and put back
into the storage. Then the strategy of the list is set to the ObjectListStrategy.

Listing 5: Adding the wrong type changes storage and the strategy

1 class W_ListObject(W_AbstractListObject):
2

3 def switch_to_object_strategy(self):
4 if self.strategy is self.space.fromcache(EmptyListStrategy):
5 list_w = []
6 else:
7 list_w = self.getitems()
8 self.strategy = self.space.fromcache(ObjectListStrategy)
9

10 self.init_from_list_w(list_w)

Currently there are only strategies for integers, strings and floats since many lists seem
to store these data types. Other strategies e.g. for unicode strings are planned and can
be added easily. In addition there are also two special strategies for empty lists and
range-lists.

The EmptyListStrategy is used for storing lists without any element. For that rea-
son the storage for a list using this strategy is None. The implementation of the lists
methods are very simple. Since an empty list has no elements there are several opera-
tions that will not do anything. By knowing that, we can directly return the expected
response without computing anything. For instance, in the former version of PyPy’s
list implementation, calling contains on an empty list would read the storage and try
to iterate over it, looking for the given object. The for-loop would stop before the first
iteration, noticing that there aren’t any items to iterate over. But until then we already did
some work. With strategies we return False at once when the method is called. For some
methods it is even possible to do nothing (deleteslice, reverse), others only need to raise
an IndexError (pop, setitem). A little more work needs to be done in case an element
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is added to the empty list (see Listing 6). Since we want to use the correct strategy for
the list, we need to check the type of the added element, get the corresponding strategy
and initialize a new erased storage object using that strategy. Then we just assign the
attributes storage and strategy of the W_ListObject to these values. After that,
append is called again which will now be delegated to the correct strategy.

Listing 6: Append of the EmptyListStrategy
1 class EmptyListStrategy(ListStrategy):
2

3 def append(self, w_list, w_item):
4 self.switch_to_correct_strategy(w_list, w_item)
5 w_list.append(w_item)

For lists that are defined by using range in Python, we implement another strategy, the
RangeListStrategy. Usually users who define range-lists need them for iteration. For that
purpose it is not necessary to put all elements into the memory2. Instead, one should
use xrange. Unfortunately, an xrange list is not a real list, thus using typical list methods
on it is not possible. The RangeListStrategy tries to combine the advantages of both
approaches. Like xrange, it only stores the values that define the lists, such as start,
stop and step, while still behaving like a normal list. In contrast to CPython’s where
users need to specifically convert the xrange object to a list if they want to work with
it using list methods, in PyPy users won’t notice any difference at all. And as long as
the user does not tamper with its content it stays like that. Only if list methods are used
that destroy the initial definition of the range, such as append or delete, we need to
create all elements and store them using the IntegerListStrategy. All of this is
done internally without the user noticing that the list was altered.

Storing some of the data unwrapped by using strategies now saves one level of in-
direction, as can be seen in Figure 8. Of course each operation on a list needs to go via
the strategy, but since we save one indirection for each element stored in that list and the
strategy classes are singletons, the benefits outweigh the costs.

These optimizations have also some other advantages. Having certain data types
unwrapped makes it possible to implement optimized methods for certain cases. For
instance comparison of unwrapped integers is now faster than comparison between in-
tegers that are wrapped into objects. One algorithm that benefits from this optimization
is the sorting of lists. Sorting needs lots of comparisons between objects. This means that
for every comparison we need to determine the object’s data type, unpack the wrapped
object, read its value, do the same with the other object and then compare the results
with each other. Now, with the data types being unwrapped, we can compare the object
directly, which is much faster. To do this we need to rewrite the algorithm that is used
for sorting lists and replace the general method for comparing wrapped objects with one
that compares unwrapped objects directly, like integers or strings.

Another method that can be optimized is contains (see Listing 7). Even though
2with Version 3.0 of CPython the range method now works like xrange; however, lists can still be created

from that intentionally using the list constructor.
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its runtime is not as bad as sorting, it is still linear in the worst case. So in order to check
whether an element is in the list, it must be compared to every element on the way, until
a match is found. For the Integer- and StringListStrategy the method can be
rewritten the same way it was done for sort, comparing unboxed elements if their type
matches. However, it is still necessary to have a fallback method that compares wrapped
elements. It is not possible to simply return False if an integer list is asked whether it
contains other elements despite integers. For instance, 1.0 is a float and thus does
not pass the type check of the IntegerListStrategy. However, it is still equal to 1,
so [1, 2, 3].contains(1.0) would return True. Even for strings it is not possible
to predict the return value of the contain method. In dynamic languages it is very easy
to define a new class that inherits from str and overwrites the __eq__ method to be
comparable to instances of that class (e.g. by always returning True).

Listing 7: Contains on ListStrategies
1 class AbstractUnwrappedStrategy(object):
2

3 def contains(self, w_list, w_obj):
4 if self.is_correct_type(w_obj):
5 obj = self.unwrap(w_obj)
6 l = self.unerase(w_list.lstorage)
7 for i in l:
8 if i == obj:
9 return True

10 return ListStrategy.contains(self, w_list, w_obj)

4.2 Sets

Now we want to apply the same implementation approach we used for lists to sets. The
implementation is almost the same. However, it is necessary to adjust them a little since
the datastructure for sets is different. In contrast to lists where all elements are ordered
and accessible by an index, the data in sets is unordered. The reason for this is that lists
are usually used for iterating over objects or implementing data structures where the
ordering is important (e.g. priority queues). Therefore, iterating needs to be fast but
finding a certain object is not that important. Sets, in contrast, are used to store a bunch
of unique objects where the ordering is not important at all but finding certain elements
quickly is mandatory to implement good algorithms for comparing, intersecting or
joining sets. Hence, we cannot use a (RPython) list to store the data. Instead we need
an internal representation that has the mentioned properties. The data structure we
are using is a dictionary. Dictionaries in Python are unordered and elements are stored
using a hash map. This way elements can be accessed in constant time. Dictionaries
expect (key, value)-pairs as elements, but since the elements of sets have only a
single value, the element itself is used as the key and always maps to None.

Of course methods can be optimized, too, now that we have unwrapped data in
our memory. In fact the potential for sets is much greater than for lists, since sets
tend to do many operations in combination with other sets. Apart from the equal
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method (which is similar to the one used in lists) we have methods like difference,
symmetric_difference, intersection, isdisjoint, issubset or issuperset.
For all these methods we can write two implementations. One for the general case where
we have arbitrary objects and a specialized one for each strategy where the datatypes
are unwrapped. This way we can compare integers, strings, floats, etc on a lower level
which results in a great speed up compared to the former implementation.

Another advantage of having set-strategies is that we can write fast-paths for some
methods. For example, let’s have a look on the method intersection. Intersecting
two sets returns a new set consisting only of elements that are contained in both of these
sets. Now assume these two sets are completely different: One contains only strings.
The other consists only of integers. The intersection of those sets would always be an
empty set. But since usually sets may contain arbitrary objects we can not predict their
content so for every object from the one set we need to check if it is also contained in
the other. With set-strategies the type of the elements in a set is known, as long as the
set does not use the ObjectSetStrategy. So, given the same scenario we could now
instantly return an empty set without looking at any element at all.

To implement this behaviour we need knowledge about which strategies may have
equal elements and which don’t. The best way to do this is by asking the strategy itself.
For instance the IntegerSetStrategy should return False if it is asked whether the
StringSetStrategy may contain an equal element. On the other hand it should
return True if the other strategy is the ObjectSetStrategy. For this purpose each
strategy implements a method may_contain_equal_element. See Listing 8 for an
example of how this method would look like for the IntegerSetStrategy.

Listing 8: may_contain_equal_elements on IntegerSetStrategy

1 class IntegerSetStrategy(AbstractUnwrappedSetStrategy, SetStrategy):
2

3 def may_contain_equal_elements(self, strategy):
4 if strategy is self.space.fromcache(StringSetStrategy):
5 return False
6 if strategy is self.space.fromcache(EmptySetStrategy):
7 return False
8 # add more strategies here later
9 return True

Now that strategies can be asked whether they and another strategy may have equal ele-
ments, the code for the intersection algorithm can be adjusted. There are now three cases
which need to be taken care of differently. The first one occurs if two sets are intersected
that have the same strategy. Then all elements can be compared unwrapped. The sec-
ond case is the fastpath where the strategies of the two sets cannot have equal elements
due to their strategy. Then it is safe to return an empty set at once. And finally there
is the general case where there is no information about the other set. This is equivalent
to the former implementation without strategies, meaning that all elements have to be
compared wrapped. An example for the intersection method is shown in Listing 9.
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Listing 9: Fastpath for W_SetObject.intersection

1 class AbstractUnwrappedSetStrategy(object):
2

3 def _intersect_base(self, w_set, w_other):
4 if self is w_other.strategy:
5 strategy = self
6 storage = strategy._intersect_unwrapped(w_set, w_other)
7 elif not self.may_contain_equal_elements(w_other.strategy):
8 strategy = self.space.fromcache(EmptySetStrategy)
9 storage = strategy.get_empty_storage()

10 else:
11 strategy = self.space.fromcache(ObjectSetStrategy)
12 storage = self._intersect_wrapped(w_set, w_other)
13 return storage, strategy

Another method where a fast-path like this can be added is the difference algorithm.
It returns all items that are in the one set, but not in the other. The algorithm iterates
over all elements of the first set and checks for each if it is also contained in the other set.
If not it is added to a new set which will be returned as the result. This algorithm has the
same flaw as the former intersection method. In every case we need to iterate over all
elements of the first set, even if the other set has no matching elements at all. Having two
completely different sets, the difference algorithm would always return the initial set. So,
as with the intersection method, we could easily add a similar fast-path to difference.

Two more examples where a fast-path can be added are isdisjoint and issubset.
Two sets are disjoint if all elements from one set are different from the other. So for
sets with different strategies we can always return True. For issubset it is the other way
around. A set can only be the subset of another set, if every element from the first set is
also contained in the other one. A weaker condition would be that those two sets must
have at least one equal element. Since this can not be true for non-matching strategies
we can return false immediately.

There are also some optimizations that do not necessarily have something to do
with our set strategies. One worth mentioning is intersection_multiple. This
method is used to intersect a set with each element of a list containing iterables such as
other sets, lists or even generators. The reason for having such a method is so that users
do not have to implement an intelligent way of intersecting several iterables themselves.
But the former version simply iterates over the list of iterables and intersects each one
with the first set. A more intelligent way would be to order the list of iterables and start
with the smallest. This way we can massively reduce the amount of comparisons done
during the whole algorithm. This is due to the behaviour of intersection always resulting
in a set that is smaller or at least as small as the sets that were intersected. So by choosing
the smallest set for the first intersection we minimize the amount of comparisons in all
the following intersections. Indeed sorting the whole list of iterables is expensive, so
even though we skip a lot of comparisons, this optimization might not be worth the
effort. A better approach would be to only put the smallest set at the beginning. The
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smallest set can be found in linear time (O(n)) while sorting the whole list would be
in O(n ∗ log(n)). By starting with the smallest set the amount of comparisons in all
following intersections have already been heavily reduced and with every intersection
the resulting set can only become smaller or stays at least the same. Sorting the list
would still save some more comparisons but this would not be in proportion to the costs
of the sorting.

4.3 Dictionaries

The last collection, strategies can be applied to, are dictionaries. In PyPy there already
are different dictionary implementations, called DictImplementations. For instance
there is the StrDictImplementation, which behaves like a normal dict but accepts
only strings as key, or the ModuleDictImplementation, which is a cell dict imple-
mentation using a version tag. These implementations are similar to the specialized list
implementations that were discussed in Section 4.1. So the first thing that needs to be
done is to replace those specialized implementations by strategies and change the parent
dictionary class W_DictMultiObject to use the correct one when initializing a new
dictionary. Furthermore, it is necessary to implement two more strategies: One for the
case of an empty dictionary, EmptyDictStrategy; and another for dictionaries with
different types, ObjectDictStrategy.

Rewriting the specialized implementations to strategies is similar to the way the
strategies for lists and sets were written. However, there are little differences. When
specialized implementations were used, like the StrDictImplementation, it was
necessary to add a way to fallback to the general implementation if another type was
added that does not match. Once a dict used this general implementation there was no
way to return to using other implementations. By using strategies it is now possible to
switch back and forth between different implementations. For instance if a dictionary is
cleared it will use the EmptyDictStrategy and from there will automatically pick the
correct strategy depending on the first data type that is added.

Those strategies are only applied to the keys of a dictionary and not to the values.
There are two reasons for this. First of all, values do change more often than keys so it is
more likely for them to change their type. Second, having strategies for keys and values
would result in a huge number of combinations (strings with strings/int/objects, objects
with strings/ints/objects, etc) and for each a strategy would need to be implemented (or
generated).

4.4 Interactions between different data types

With the optimizations for lists, sets and dictionaries, collections in PyPy became faster
for local operations. However, Python allows the combination of these data structures
with each other. For instance, to create a set one often uses a list to initialize it:

>>> set([1,2,3])
set([1,2,3])
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Of course, this also works the other way around and there are even more combinations.
Sets can be built from lists, lists can be build from sets or strings and even dictionaries
can be initialized this way (except there, this is done by using the dict-method fromkeys
which uses the elements as keys and sets the values to None).

The problem with this is that now the elements of these data structures are stored
unwrapped for certain data types. So when a set is created from a list the elements of
that list first need to be wrapped, only to become unwrapped by the set again. This
happens whenever both data structures have a strategy for that particular data type.

Since all mentioned data structures are capable of dealing with unwrapped data
types it would be nice to find a way to avoid the unnecessary wrapping and unwrapping
when combining them with each other. All that needs to be done to achieve this is to de-
fine methods on these data structures that return their unwrapped content. Additionally
in the initialization method of each data struture some functionality needs to be added
to get that content and use it in the correct way.

To clearify things, here is an example: Imagine we want to be able to initialize sets
with lists using unwrapped data. The first step would be to add a method to the
W_ListObject that returns all elements unwrapped. This method needs to be added to
every list strategy. For the IntegerListStrategy that method would look like this:

def getitems_int(self, w_list):
return self.unerase(w_list.lstorage)

All that needs to be done is to unerase the storage and return it. The same is done for
the String- and FloatListStrategy. Other strategies return None and range-lists
need to create the real data first before returning it. The next step involves altering the
W_SetObject to deal with the list of unwrapped data. But since a set could be initialized
with any kind of iterable this would mean adding a huge amount of conditions to the
init-method. First we would need to check whether the iterable is a list. Then we would
need to check which strategy the list uses and then call the correct method to receive
the unwrapped data. The same conditions are needed in the case that the iterable is a
dictionary. To simplify this and to avoid writing a lot of conditions, a helper function can
be written within the objectspace. In PyPy there already exists a method called listview
which allows to convert an iterable to a list. For instance this method can be used to
convert a generator into a list to initialize a set. Similar methods are now added for each
data type for which strategies exist. These methods check if a given object may have
unwrapped data and returns it. Otherwise it returns None. Here is an example for such
a method:

def listview_int(self, w_obj):
if isinstance(w_obj, W_ListObject):

return w_obj.getitems_int()
return None

In the initialization routine of the W_SetObject these listview methods can now be used
by giving them the iterable that initalizes the set. If the method returns a list, this list can
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be directly used as the new storage (for lists) or put into a new storage (for sets and
dictionaries). If the listview method returns None the given iterable does not contain
data with the specified type. So the next step would be to check for other data types
using the other listview methods. If the return value of all those methods is still None,
the iterable has arbitrary objects as data.

4.5 Influence on the JIT

Introducing strategies for collections does not only reduce memory usage but also gives
the just-in-time compiler of PyPy more information to optimize generated traces. By
using strategies the JIT knows the type of elements in some collections and thus can
predict the type of the results when using these elements, for instance in an addition or
multiplication. Or it can remove type checks that are obsolete when the type is known
(e.g. when adding an integer to a list using the integer-strategy). For a more detailed
example have a look at the following small Python program that stores the square of all
numbers from 1 to 10000 in a list:

l = range(10000)
for i in l:

l[i] = i*i

The optimized trace would look as follows:

label(TargetToken(-1221871140))
debug_merge_point(’#19 FOR_ITER’)
i50 = getfield_gc(p28, list.length)
i51 = uint_ge(i34, i50)
guard_false(i51, descr=<Guard17>)
p52 = getfield_gc(p28, list.items>)
i53 = getarrayitem_gc(p52, i34)
i54 = int_add(i34, 1)
debug_merge_point(’#22 STORE_FAST’)
debug_merge_point(’#25 LOAD_FAST’)
debug_merge_point(’#28 LOAD_FAST’)
debug_merge_point(’#31 BINARY_MULTIPLY’)
setfield_gc(p14, i54, W_AbstractSeqIterObject.inst_index)
i55 = int_mul_ovf(i53, i53)
guard_no_overflow(, descr=<Guard18>)
debug_merge_point(’#32 LOAD_FAST’)
debug_merge_point(’#35 LOAD_FAST’)
debug_merge_point(’#38 STORE_SUBSCR’)
i56 = getfield_gc(p41, list.length>)
i57 = uint_ge(i53, i56)
guard_false(i57, descr=<Guard19>)
p58 = getfield_gc(p41, list.items)
setarrayitem_gc(p58, i53, i55)
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debug_merge_point(’#39 JUMP_ABSOLUTE’)
guard_not_invalidated(, descr=<Guard20>)
i59 = getfield_raw(160443396, pypysig_long_struct.c_value)
i60 = int_lt(i59, 0)
guard_false(i60, descr=<Guard21>)
debug_merge_point(’#19 FOR_ITER’)
jump(TargetToken(-122187140))

This trace and the trace without optimizations have some important differences. For
instance the following line reads the integer from the list:

i62 = getarrayitem_gc(p61, i30, descr=<ArrayS 4>)

The optimized version returns an integer, because by using strategies the JIT knows that
all objects in the list are integers. The unoptimized version, however, would return a
pointer to a W_IntObject. This also means that before multiplying i with itself the JIT
needs to validate that the object that was read from the list really is an integer. This is
done by an additional guard:

guard_nonnull_class(p56, ConstClass(W_IntObject), descr=<Guard24>)

Then, since the JIT can not add objects with each other, it needs to read the actual value
from the W_IntObject:

i58 = getfield_gc_pure(p56, W_IntObject.inst_intval)

Another part that is totally missing in the optimized trace is the following:

p70 = new_with_vtable(ConstClass(W_IntObject))
setfield_gc(p70, i66, descr=<FieldS W_IntObject.inst_intval 8>)

Without strategies, the result from the multiplication needs to be boxed again in a new
W_IntObject before it can be put into the list. Having list-strategies the JIT knows that
lists will store the integer unwrapped, which means that the boxing is not really needed.
Therefore, the creation of the W_IntObject is optimized away in the first place.
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5 Instances

Collections are not the only objects that store a lot of primitive data types. Primitive
data is also often stored in instances. Instances in Python store two kinds of information:
Their class and their attributes (also called instance variables). The amount of attributes
an instance may have is not limited and in contrast to other languages such as Java and
Smalltalk where all attributes are defined by the class, in Python it is even possible to add
new ones. Because of this every instance has a dictionary where the names of the instance
variables are mapped to their values. Since most instances of the same class will have the
same set of instance variables, this way of storing them is a waste of memory. Therefore,
CPython and PyPy implemented ways of fixing this problem. Whereas CPython tries to
reduce memory consumption by using the idea of slots (effectively limiting the amount of
variables an instance of a certain class may have), PyPy uses an approach first described
in [CUL89].

5.1 Storing attributes in PyPy

To understand how the way of storing attributes in PyPy was optimized, we need to
understand how they were stored before. As said before, every instance has a dictionary
where all attributes are stored as key-values-pairs. Let’s consider the following code:

class A(object):
pass

a1 = A()
a1.x = 5

a2 = A()
a1.x = 23

This code creates a new class A and then creates two instances from it. For every instance
an attribute are assigned containing an integer. The memory layout would look as shown
in Figure 9.

As we can see the memory layout of instances of the same class is very similar. The only
differences are the values of the integer and string objects. So in order to save memory
we would like the instances to share those common parts. This is done by creating a new
object, called map. A map contains the name of an attribute and an index to the value of
that attribute. The value itself is stored into an array on the instance. The memory layout
from before would now look as shown in Figure 10.

Each map can only store one attribute and each instance only points to one map. So
adding another attribute to one of the instances is a bit more complicated. Imagine we
want to add a new attribute y to the instance a2. The solution is that the map of an
instance always points to the last attribute that was added. Currently this is the map
storing the attribute x. Adding y to the instance will create a new map and move the
instances pointer to that map. To be able to find the other attributes, every map also has



5.1 Storing attributes in PyPy 27

Figure 9: Class hierarchy for instances: naive approach

Figure 10: Class diagramm for instances: shared mapdict

a field back which points to another map. In this case y has a back pointer to x. Now the
instance a1 and a2 share the map for the attribute x but a2 also has another attribute y
(see Figure 11).

As long as the order of added attributes is the same for all instances they can share all
maps. So even if an attribute y is now added to a1 too, the map will just be reused.
However, adding another attribute, say z, to a1 instead of ywill anticipate future sharing
of maps, because every attribute added afterwards cannot be reached from a2 (see Figure
12).
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Figure 11: Shared mapdict with attributes x, y

Figure 12: Shared mapdict with attributes x, y, z

5.2 Remove the wrapping

Now that we know how PyPy stores attributes on instances we can optimize those at-
tributes even more. As we have seen, currently all attribute values are stored wrapped
and are accessed through an indirection on the instance. If we want to store attribute
values unwrapped, strategies as used before are not a good solution. Figure 13 shows
the difference between collections and instances. Whereas in collections data of the same
type is stored in a row, on instances such data is spread in a column-based manner. But
as with collections, where elements often only have one type, for instances it is likely that
their variables store the same type if they have the same class.

Figure 13: Row- vs column-based data

The solution to store unwrapped data is to create type specialized maps, one for each
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datatype (e.g. integers, strings, floats) and a generic one for arbitrary objects. But in
order to implement specialized maps it is necessary to refactor the way attributes are
read and written. When we want to store data unwrapped it is mandatory to erase it,
and when the data is being read it must be unerased and wrapped again. The problem
is that currently the instance itself is responsible for writing and reading attributes but
it doesn’t and cannot know what kind of data is stored at a certain index. To solve this
problem, we need to delegate the job of reading and writing the instances storage to the
(specialized) maps because only they know what datatype resides behind a certain index
and how to (un)erase and (un)wrap it. By using those methods, storing attributes on
instances will result in a memory layout as shown in Figure 14.

Figure 14: Unwrapped attributes

However, we need to be careful when someone wants to change the type of an attribute.
With the former implementation the value of an attribute was only a pointer to an object.
Therefore, switching an attribute’s value from an integer to a string was not a problem.
Now having unwrapped data a map can only read and write one type of data. So chang-
ing the value of an attribute is not possible without changing the map, too. This can be
done by finding the old map, and replacing it by a newly created one, specialized for
the type of the changed value. Since computing the new map is a complex operation it
will not be described here. Figure 15 shows how the memory layout will look like after
changing the attribute of one of the instances from Figure 14 to a string.

Figure 15: Changing attributes

5.3 Tagging

The optimization of the last section has one little problem. Without boxing it is not
possible to store integers on the heap anymore. In dynamic languages the value of
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an instance variable can be of any type and even change during execution. Thus the
expected reference of a pointer is an object (e.g. in PyPy a W_<type>Object). But the
integer cannot be stored directly on the instance either, as in statically typed languages.
Of course instances could be designed in such a way that certain variables only reference
a single type, but dynamic languages allow to change this type at any time. Therefore
instance variables must always be pointers. However, there is a trick called tagging that
solves this problem. Tagging makes it possible to store (certain) integers on an instance
by replacing the pointer with the value itself. This will not only get rid of the indirection
to the integer value but also saves memory because the pointer is not needed anymore.

But how does integer tagging work? On most target architectures heap blocks are
aligned on multiples of 2, 4 or more adressable units to increase performance, because
CPUs are optimized to handle memory that way. Therefore the least significant bits of a
pointer are always zero. If we encode the integer in such a way that the least significant
bit will always be 1 (for instance by using an encoding like 2n + 1) we can distinguish
between a pointer and an integer stored at the same adress. The downside is that the
integers we can store are limited. To be precise, the maximum integer we can store (as
tagged integer) is 232

4 (232 is the size of 4 bytes. This is divided by 2, because we have
signed integers. The other division by 2 is due to the encoding of tagged ints where we
shift all bits to get a zero in the least significant bit).

Integer tagging is already implemented in PyPy. It can be used by importing
erase_int/unerase_int from the rlib.rerased module. Using this in com-
bination with type specialized maps will result in a memory layout as shown in Figure
16.

Figure 16: Maps with tagged integers

As you can see the values of the attribute x have changed in the memory layout. This
is because of the encoding. Take 5 as an example. The binary code of that value would
be 101. To set the least significant bit to 1 this value is first shifted (1010) and then
incremented by one (1011), resulting in the value 11. The same way 7 (111) becomes
15 (1111).
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6 Evaluation

To show the performance of the presented optimizations, results for several benchmarks
are presented using Python and different PyPy translations. To see how each of the
optimization perform separately, one PyPy version was built for each one of them, as
well as one without any of the discussed optimizations and one with all optimizations
activated.

All PyPy versions were built with the integrated JIT. The different versions are
defined as follows:

• python: CPython, Version: 2.6.5

• none: PyPy without any of the optmizations described in this thesis. Revision:
2449ac0ea4a1

• lists: PyPy with list strategies only. Revision: 2449ac0ea4a1

• sets: PyPy with set strategies only. Revision: a4bba3dd3493

• dicts: PyPy with dictionary strategies only. Revision: 2449ac0ea4a1

• attrs: PyPy with unwrapped attributes and integer tagging. Revision:
b15e618e3d82

• all: PyPy with all optimizations activated (even those described in 4.4). Revision:
2449ac0ea4a1

6.1 Hardware

The benchmarks were run on a Lenovo X60T running Ubuntu 10.04 with kernel version
2.6.32. The CPU is an x86 based Intel Dual Core 1.66Ghz processor with 2048 KB cache.
RAM is 4 GB.

For CPython and PyPy with all optimizations, all benchmarks were run 30 times, taking
the average of all runs so that they contain interpretation, warm-up, code-generation and
execution of the generated code. The errors were calculated using a confidence interval
with a 95% confidence level [GBE07]. However, since a whole run through all bench-
marks with all versions and 30 iterations takes over 45 hours to complete, the bench-
marks for the other PyPy versions were executed only 3 times. As can be seen, memory
consumption and speed is quite stable (except for bazaar) so the errors will propably be
the same for the other versions.

6.2 Memory

The results for the memory usage can be seen in Table 1. In Figure 17 there is also
a diagram that shows the memory usage of the PyPy version with all optimizations
activated normalized to PyPy as it was before those optimizations have been added.
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benchmark python none lists sets dicts attrs all
networkx 114.68 117.20 125.02 127.72 57.16 115.88 54.56 ± 0.36

scapy 18.81 51.34 51.18 51.14 51.10 51.12 50.69 ± 0.22

pyexcelerator 168.82 195.66 189.54 195.28 174.85 186.97 175.71 ± 0.06

pydblite 52.25 44.57 48.16 44.64 38.74 45.65 38.33 ± 0.01

pypy-interp 86.66 97.55 93.23 96.04 90.76 97.95 88.22 ± 1.86

pypy-translate 27.22 95.88 95.27 92.87 93.42 99.21 93.87 ± 3.05

whoosh 15.66 52.51 51.07 51.04 50.95 51.43 50.99 ± 0.32

feedparser 14.09 60.02 61.13 60.77 60.38 60.30 60.92 ± 0.50

nltk-wordassoc 41.53 55.43 56.04 55.36 52.28 55.21 52.30 ± 0.05

disaster 56.79 130.45 135.62 131.00 135.60 135.00 123.33 ± 1.25

bazaar 63.63 176.81 181.40 182.21 186.79 190.34 176.57 ± 10.93

multiwords 19.85 48.59 49.01 48.69 48.61 48.68 48.24 ± 0.19

orm 32.90 75.36 77.54 75.43 75.85 78.53 74.07 ± 1.46

invindex 13.03 25.52 27.45 24.64 25.71 25.50 23.75 ± 0.02

slowsets 905.90 917.62 1045.64 593.88 917.64 917.69 721.56 ± 0.03

findprimes 9.23 23.29 19.21 23.38 23.26 23.39 18.95 ± 0.02

liststrategy 70.94 87.27 48.30 87.35 87.26 87.37 48.11 ± 0.02

setstrategy 81.10 95.58 111.99 76.01 95.59 95.70 72.19 ± 0.02

Table 1: Memory usage during execution in MiB

Starting with the benchmark networkx, we can see that the dictionary optimization saves
over 50% of memory. As we have seen in Figure 3 of Section 3, over 90% of memory
of the networkx benchmark was caused by dictionaries. A closer look at the container
analysis reveals that most of these dictionaries are empty, which explains the good
result. Whereas in the normal PyPy version each of the W_DictObjects creates an
rpython dict, using dict-strategies the storage will be None. It is also notable that PyPy
with the dictionary optimization performs even better than CPython, although the base
memory usage of PyPy is three times bigger than in CPython. However, looking at
the list optimizations shows that it is even worse than the one with list optimizations
deactived. The reason for this is that with list-strategies, every list needs an extra word
to point to the strategy, so having a huge amount of lists that all use the object strategy
will result in more memory usage.

The next benchmark is scapy. It can be seen that none of the optimizations achieves any
memory saving. Although the memory analysis shows that there is a lot of strings and
even some lists, a closer look at the container analysis shows that actually only 1% of
these strings are contained in lists.

In the pyexcelerator benchmark we can see that each of the list, dictionary and at-
tribute optimization saves a little memory. However the version with all optimizations
together only saves as much memory as the dictionary optimization, which saves the
most of the three versions. The explanation for this is that the optimized objects are
shared. If a list and a dictionary point to the same string, optimizing that string will
remove the wrapper object only once. Both collections will now point to the unwrapped
string, so the memory gain is the same as with only one of the optimizations. Obviously,
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most of the objects are contained in the dictionaries which is why the dict optimization
saves up the most.

In the pydblite benchmark dictionary optimizations save 15% of memory. Again a
look at the memory analysis shows that this is due to the heavy usage of dictionaries.
Other optimizations do not contribute to the memory saving.

The pypy-interp benchmark shows how well different optimizations work together.
As can be seen in the memory usage table, list optimizations save approximately 4MB
and dictionaries ∼5MB. Put together both optimizations save ∼9MB of memory, which
is 11% of total usage.

pypy-translate is another benchmark where the optimizations do not work very
well, although it uses a resonable amount of dictionaries, lists and strings. A closer look
at the container analysis reveals that lists mostly store arbitrary objects and only a small
amount of dicts seem to store some strings.

Yet another benchmark that does not profit by the optimizations is whoosh. Again
the reason for this is that only a few of the many strings whoosh uses are stored inside
any of the optimized collections (from almost 3 million unicode strings and 1.2 million
ascii strings, only 10.000 are stored in lists or used as dictionary keys. The rest is scattered
in tuples, dictionary values and other objects).

feedparser also does not save memory by using any of the optimizations. Looking
at the memory analysis we can see that feedparser uses a lot of user generated objects.
Indeed a closer look shows that over 45% of memory is used by user objects and unicode
strings. Only 7% are dictionaries containing strings.

The nltk-wordassoc benchmark only has a little memory improvement by the opti-
mizations. The reason for this can be seen if we have a look at the memory analysis.
Over 60% of memory come from user generated objects. However the dict optimization
still manages to save 5% of total memory.

The next benchmark is disaster. This benchmark is notable in the way that the op-
timizations only achieve an improvement when activated all at once. This effect needs
further investigation.

bazaar is a benchmark where it is hard to say whether optimizations improve memory
consumption or change it to the worse. Since the measurements are very unstable this
benchmark needs further investigation, too.

The multiwords benchmark seems to have a lot of potential for optimizations using
strings, when looked at the diagrams from Section 3. Unfortunately most of the strings
are stored in tuples which is why the optimizations do not bring any improvement.

Another benchmark where memory savings are very low is orm. Only with dictio-
nary optimizations it is possible to save 5% of total memory usage.
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Figure 17: Relative memory usage of version all, normalized to version none

invindex is a benchmark that does only save approximately 7% of memory by us-
ing all memory optimizations. However, these optimizations will greatly increase
performance as we will see later.

A benchmark that uses a lot of memory is slowsets. Here we can see how much
the optimizations can influence memory usage, saving almost 22% of total memory
compared to PyPy and even CPython.

The findprimes benchmark is a benchmark that also heavily uses lists. Thus, mem-
ory savings are quite high with nearly 22% of total memory.

The benchmarks list-strategy and set-strategy are microbenchmarks that were writ-
ten to test the effectiveness of the list- and set-optimizations. They are not considered to
be real programs and should only show the results in the best/worst case. The results
show that optimizations are capable of saving up to 45% of memory with lists, and 25%
with sets.

6.3 Speed

In this thesis not only memory usage was optimized but also execution time. The usage
of strategies made it possible to add fastpaths to a lot of methods from lists, sets and
dictionaries. Also, being able to deal with unwrapped data a lot of other things could be
made faster, like comparison or assignment. Therefore, this section presents the runtime
of all benchmarks compared to CPython and the former PyPy version without any of the
optimizations. The results for all versions can be seen in Table 2 as well as a comparison
between PyPy with all optimizations and no optimization, shown in Figure 18.
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benchmark python none lists sets dicts attrs all
networkx 7.10 7.56 6.69 6.43 3.97 6.04 3.25 ± 0.54

scapy 2.53 5.63 5.07 5.07 4.70 4.87 4.53 ± 0.53

pyexcelerator 92.54 37.89 38.63 36.84 35.67 37.41 36.45 ± 0.31

pydblite 1.47 1.18 1.22 1.17 1.07 1.18 0.98 ± 0.04

pypy-interp 54.99 28.96 28.54 28.55 26.85 35.32 26.87 ± 3.02

pypy-translate 11.52 30.59 29.68 29.00 29.98 31.08 30.06 ± 1.19

whoosh 5.92 5.08 4.64 4.68 4.62 4.81 4.54 ± 0.22

feedparser 5.87 12.08 11.92 11.81 11.83 11.86 12.19 ± 1.05

nltk-wordassoc 14.32 7.23 6.60 6.20 6.13 6.38 5.80 ± 1.09

disaster 108.35 65.55 68.10 65.64 64.48 66.34 65.86 ± 0.46

bazaar 586.62 328.05 350.52 388.34 358.86 346.50 348.21 ± 10.66

multiwords 4.69 4.68 4.63 4.71 4.67 4.69 4.54 ± 0.02

orm 24.07 27.53 27.64 27.63 26.64 28.27 27.05 ± 0.49

invindex 52.67 91.36 107.30 91.72 92.47 92.72 8.04 ± 0.11

slowsets 93.32 148.99 159.77 175.71 147.47 187.56 113.79 ± 0.77

findprimes 19.88 2.22 1.27 2.22 2.20 2.16 1.23 ± 0.04

liststrategy 1.43 1.80 0.85 1.79 1.79 1.82 0.81 ± 0.01

setstrategy 1.89 2.52 2.78 1.91 2.50 2.49 1.75 ± 0.01

Table 2: Execution time in seconds

As we have already seen in the memory results, some benchmarks do not work
well with the optimizations, resulting in very little or almost zero memory reduction. In
most of the benchmarks this also means that there is also no speedup. These benchmarks
are scapy, pyexcelerator, pypy-translate, whoosh, feedparser, bazaar, multiwords and orm.

Benchmarks where we can find small, but still good improvements of execution time are
scapy (12% faster), pydblite (14%), pypy-interp (7%), nltk-wordassoc (8%) and disaster (5%).

Some benchmarks perform much better. Of course there are the microbenchmarks list-
strategy (55%) and set-strategy (29%). But also some real programs like networkx, which is
almost 60% faster. We can see in Table 2 that this can mostly be attributed to the dictio-
nary optimizations and the optimizations described in Section 4.4. Another one is slowsets
where set optimizations are responsible for 24% speed up. findprimes is also a good ex-
ample that shows that list-strategies can reduce execution time by over 40%. However,
the best results can be seen in the invindex benchmark. Although memory usage is not re-
duced much by the optimizations, execution time is 90% faster. The reason for this is that
the algorithm that computes the inverted index frequently creates sets from lists, which
was optimized in Section 4.4.

Since all these benchmarks were specifically choosen for this thesis, it is reasonable to
have a look at some other benchmarks, too. Table 3 and Figure 19 show the results of
PyPy’s speed benchmarks. As with the results from above, it can be seen that for many
programs the optimizations presented in this thesis do not achieve better results, but for
some benchmarks they work quite well.
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Figure 18: Execution time of version all, normalized to version none
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Figure 19: Execution time of version all, normalized to version none (PyPy benchmarks)



6.3 Speed 37

benchmark none all
ai 0.2413 ± 0.0968 0.1761 ± 0.0974

bm_chameleon 0.0578 ± 0.0525 0.0495 ± 0.0450

bm_mako 0.1479 ± 0.0447 0.1428 ± 0.0432

chaos 0.0439 ± 0.1276 0.0370 ± 0.1276

sphinx 384.7070 382.0640
crypto_pyaes 0.2004 ± 0.1004 0.2002 ± 0.1012

django 0.1277 ± 0.0175 0.1154 ± 0.0165

fannkuch 0.5973 ± 0.0175 0.4937 ± 0.0178

float 0.1398 ± 0.0454 0.1409 ± 0.0463

genshi_text 0.0827 ± 0.1200 0.0718 ± 0.1203

genshi_xml 0.1903 ± 0.2527 0.1795 ± 0.2546

go 0.2755 ± 0.1691 0.2858 ± 0.2174

html5lib 10.2491 ± 5.7234 9.6805 ± 5.1664

json_bench 5.3425 ± 0.2416 5.3540 ± 0.2600

meteor-contest 0.4472 ± 0.0294 0.3409 ± 0.0332

nbody_modified 0.1227 ± 0.0144 0.1217 ± 0.0142

pyflate-fast 1.8605 ± 0.0548 1.6684 ± 0.0584

raytrace-simple 0.0852 ± 0.0102 0.0849 ± 0.0136

richards 0.0132 ± 0.0103 0.0132 ± 0.0104

slowspitfire 1.1285 ± 0.0237 0.9924 ± 0.0253

spambayes 0.2628 ± 0.2217 0.2520 ± 0.2184

spectral-norm 0.0450 ± 0.0266 0.0426 ± 0.0268

spitfire 6.8732 ± 0.3339 7.1548 ± 0.3226

spitfire_cstringio 5.3866 ± 0.2172 5.3452 ± 0.1878

sympy_expand 2.1035 ± 2.0126 2.1314 ± 2.0531

sympy_integrate 5.7656 ± 5.6782 5.6902 ± 5.7986

sympy_str 1.7621 ± 2.2802 1.7686 ± 2.3327

sympy_sum 1.4028 ± 0.9527 1.4277 ± 0.9619

telco 0.1331 ± 0.0886 0.1237 ± 0.0899

twisted_iteration 0.0339 ± 0.0001 0.0328 ± 0.0001

twisted_names 0.0054 ± 0.0002 0.0052 ± 0.0003

twisted_pb 0.0462 ± 0.0024 0.0453 ± 0.0022

twisted_tcp 1.2741 ± 0.0479 1.2553 ± 0.0554

Table 3: Execution time of PyPy benchmarks in seconds
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7 Related Work

The optimization for instance variables in PyPy described in Section 5 was intially ex-
plored by Chambers, Ungar and Lee [CUL89]. For their implementation of an efficient
VM for SELF, they introduced maps to share attributes between prototypes of the same
clone family.

There has been also a lot of other related work in the context of Java Virtual Machines.
Most of this work also tries to target memory constrained mobile devices and is not tar-
geted at dynamic languages specifically. Therefore it does not exploit the specific memory
effects of dynamic languages.

In [SHM08], Sata, Hirzel and McKinley explore "the sources and types of memory inef-
ficiencies in a set of Java benchmarks", outlining "previously proposed memory-saving
approaches and idealized heap compaction". All these optimizations could be easily ap-
plied to PyPy. Although not all of them would achieve enough memory reduction to
justify the implementation effort.

They start with compression techniques that operate on objects. One technique is the
strictly-equal object sharing proposed by Appel and Gonçalves in [AG93]: If two objects
are stricly equal, i.e. if they have the same class and all fields have the same value, then
they can completely share their memory. For instance, by only allocating one instance
and point all references to that instance. The same technique can also be used for arrays
where all elements are the same. Another technique is deep-equal object and array sharing
which works almost the same as strictly-equal object sharing, though in an eased form.
To share memory, two objects (or arrays) do not necessarily must have exactly the same
pointer fields (or elements) as long as the targets of the pointers (the elements) are equal.
Therefore, this compression technique is even more efficient than the stricly-equal one.

Other compression techniques work on fields of class instances. Asanian and Rinard ex-
plored constant field elision, field bit-width reduction and dominant-value field hashing [AR03].
Constant field elision reduces memory by making fields static that have the same value
for all instances. This way there is only one value on the heap that is referenced by all
those instances. Field bit-width reduction represents fields with smaller bit-width if their
values are small (e.g. storing more than one value in the allocated memory of one field).
Dominant-value field hashing takes advantage of instances which field values have only
few distinct values. Those values can then be stored into a dictionary and referenced by
their index that is stored on the field instead. Aberrant values are stored in a hashmap
with the object ID as key.
Chen, Kandemir and Irwin exploit frequently occuring field values in instance represen-
tations to store instances in a more compact way [CKI05]. Their implementation is based
on the same idea as dominant-value field hashing, instead that they use offline profiling
and per-instance decisions to deal with mistakes. Also, instead of optimizing single fields
of instances, they look at all fields of a class together [SHM08].
If fields of instances do not have all the same value but the amount of those values is
small (K < 256), field value set indirection can be used [CR07, TABP07]. Then instead of the
value, the index into a dictionary is stored on the fields and the actual values are stored
in the dictionary. If the amount of values is bigger (K > 256), the 255 most frequent values
are stored in the dictionary and the rest is stored in a hashmap, index by the object ID.
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The lazy invariant computation optimizes fields in a way that for two fields that are always
identical only one value is stored. Furthermore, if a field is the result of the computation
of two other fields, then this result is not stored at all, since it can always be computed
when needed.

A compression technique that operates on array instances is trailing zero array trimming.
This technique works against the "over-provision of the capacity of arrays used as buffers
that" that lead "to unused trailing zeros" by trimming them [CKV+03]. This technique is
less useful in dynamic languages, because most dynamic languages provide resizable
array lists which users do not need to over-allocate themselves. Another one is array bit-
width reduction that works like field bit-width reduction. It works, for example, on boolean
arrays. Instead of storing booleans into an array it uses a bit vector for representation.
Another use case proposed by Zilles are character arrays that are represented by a 16-bit
encoding (unicode). If in such an array all characters only need 8-bit the character array
can be replaced by a byte array [Zil07]. Two other techniques are array value set indirection
and array value set caching which work similar to the set indirection and caching of fields
from above.
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8 Conclusion and Future Work

This thesis discussed some advantages and disadvantages of Dynamic Languages. One
major problem was that they use a lot of memory. To see where this memory comes
from and how it is partitioned, a selection of programs with heavy memory usage where
analyzed. The results showed that a lot of data comes from primitive data types such
as strings, integers and floats and that these are often stored in collections like lists,
sets and dictionaries. It was explained that data in dynamic languages is typically
boxed and why this is necessary. But it was also explained that one can reduce some
overhead by removing that boxing, which is possible if only one type of data is stored in
a collection. Section 4 presented a feasible implementation for this and some coherent
speed optimizations on top of PyPy. Another optimization was presented in Section 5,
where it was shown how it is possible to store unwrapped data on instance variables. To
measure how well the optimizations perform, benchmarks were written that analyzed
memory usage and execution time of the same programs that were also used for the
memory analysis. The results showed that there are many cases were the presented
optimizations can reduce memory usage and execution time between 10% to 90%.
However, there were also some programs where no improvement was achieved.

This thesis shows that there are many possibilites to optimize dynamic languages
and the results show that they have great potential to reduce memory usage as well
as execution time. There are still a lot of optimizations that haven’t been implemented
yet. For instance, the optimizations for collections can be extended to support more
data types like floats, which were only added for lists. Furthermore, there are still some
fastpaths that could be written, for instance to make comparison (e.g. eq, lt, gt) faster
for lists. Then there is a possible optimization for strings which could check whether
a unicode string really contains only ascii characters and then stores it as an ascii
string. Another collection that could be optimized are tuples which can be specialized
depending on their length and even on often used combinations of types.
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